Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.490
Filtrar
1.
Cell Host Microbe ; 32(4): 573-587.e5, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38569545

RESUMO

Microbiota assembly in the infant gut is influenced by diet. Breastfeeding and human breastmilk oligosaccharides promote the colonization of beneficial bifidobacteria. Infant formulas are supplemented with bifidobacteria or complex oligosaccharides, notably galacto-oligosaccharides (GOS), to mimic breast milk. To compare microbiota development across feeding modes, this randomized controlled intervention study (German Clinical Trial DRKS00012313) longitudinally sampled infant stool during the first year of life, revealing similar fecal bacterial communities between formula- and breast-fed infants (N = 210) but differences across age. Infant formula containing GOS sustained high levels of bifidobacteria compared with formula containing B. longum and B. breve or placebo. Metabolite and bacterial profiling revealed 24-h oscillations and circadian networks. Rhythmicity in bacterial diversity, specific taxa, and functional pathways increased with age and was strongest following breastfeeding and GOS supplementation. Circadian rhythms in dominant taxa were further maintained ex vivo in a chemostat model. Hence, microbiota rhythmicity develops early in life and is impacted by diet.


Assuntos
Fórmulas Infantis , Microbiota , Lactente , Feminino , Humanos , Fórmulas Infantis/microbiologia , Aleitamento Materno , Leite Humano , Bifidobacterium , Fezes/microbiologia , Oligossacarídeos/metabolismo , Ritmo Circadiano
2.
J Agric Food Chem ; 72(14): 7607-7617, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563422

RESUMO

Gastrointestinal (GI)-associated viruses, including rotavirus (RV), norovirus (NV), and enterovirus, usually invade host cells, transmit, and mutate their genetic information, resulting in influenza-like symptoms, acute gastroenteritis, encephalitis, or even death. The unique structures of human milk oligosaccharides (HMOs) enable them to shape the gut microbial diversity and endogenous immune system of human infants. Growing evidence suggests that HMOs can enhance host resistance to GI-associated viruses but without a systematic summary to review the mechanism. The present review examines the lactose- and neutral-core HMOs and their antiviral effects in the host. The potential negative impacts of enterovirus 71 (EV-A71) and other GI viruses on children are extensive and include neurological sequelae, neurodevelopmental retardation, and cognitive decline. However, the differences in the binding affinity of HMOs for GI viruses are vast. Hence, elucidating the mechanisms and positive effects of HMOs against different viruses may facilitate the development of novel HMO derived oligosaccharides.


Assuntos
Leite Humano , Rotavirus , Lactente , Criança , Humanos , Leite Humano/química , Rotavirus/genética , Rotavirus/metabolismo , Sistema Imunitário , Antivirais/farmacologia , Oligossacarídeos/metabolismo
3.
J Agric Food Chem ; 72(13): 7179-7186, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520358

RESUMO

Lacto-N-neotetraose (LNnT), a prominent neutral human milk oligosaccharide (HMO), serves as a pivotal structural element in complex HMO biosynthesis. Given its promising health effects for infants, the biosynthesis of LNnT is garnering greater interest. Using a previously engineered strain as a chassis, a highly effective LNnT producer was constructed. First, LNnT synthesis in Escherichia coli MG1655 was achieved by introducing ß1,3-N-acetylglucosaminyltransferase LgtA and ß1,4-galactosyltransferase CpsIaJ, coupled with the optimization of enzyme expression levels using various promoters. Subsequently, ugd underwent disruption, and the galE gene was enhanced by replacing its promoter with PJ23119 or Ptac. Then, a lux-type quorum sensing (QS) system was applied to achieve varied metabolic regulation. Additionally, systematic optimization of the QS promoters was conducted to further improve the LNnT titer in the shake flask. Finally, the extracellular titer of LNnT was 20.33 g/L, accompanied by a productivity of 0.41 g/L/h.


Assuntos
Escherichia coli , Percepção de Quorum , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Oligossacarídeos/metabolismo , Leite Humano/química
4.
mBio ; 15(4): e0029824, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38441000

RESUMO

Observational evidence suggests that human milk oligosaccharides (HMOs) promote the growth of commensal bacteria in early life and adulthood. However, the mechanisms by which HMOs benefit health through modulation of gut microbial homeostasis remain largely unknown. 2'-fucosyllactose (2'-FL) is the most abundant oligosaccharide in human milk and contributes to the essential health benefits associated with human milk consumption. Here, we investigated how 2'-FL prevents colitis in adulthood through its effects on the gut microbial community. We found that the gut microbiota from adult mice that consumed 2'-FL exhibited an increase in abundance of several health-associated genera, including Bifidobacterium and Lactobacillus. The 2'-FL-modulated gut microbial community exerted preventive effects on colitis in adult mice. By using Bifidobacterium infantis as a 2'-FL-consuming bacterial model, exploratory metabolomics revealed novel 2'-FL-enriched secretory metabolites by Bifidobacterium infantis, including pantothenol. Importantly, pantothenate significantly protected the intestinal barrier against oxidative stress and mitigated colitis in adult mice. Furthermore, microbial metabolic pathway analysis identified 26 dysregulated metabolic pathways in fecal microbiota from patients with ulcerative colitis, which were significantly regulated by 2'-FL treatment in adult mice, indicating that 2'-FL has the potential to rectify dysregulated microbial metabolism in colitis. These findings support the contribution of the 2'-FL-shaped gut microbial community and bacterial metabolite production to the protection of intestinal integrity and prevention of intestinal inflammation in adulthood.IMPORTANCEAt present, neither basic research nor clinical studies have revealed the exact biological functions or mechanisms of action of individual oligosaccharides during development or in adulthood. Thus, it remains largely unknown whether human milk oligosaccharides could serve as effective therapeutics for gastrointestinal-related diseases. Results from the present study uncover 2'-FL-driven alterations in bacterial metabolism and identify novel B. infantis-secreted metabolites following the consumption of 2'-FL, including pantothenol. This work further demonstrates a previously unrecognized role of pantothenate in significantly protecting the intestinal barrier against oxidative stress and mitigating colitis in adult mice. Remarkably, 2'-FL-enhanced bacterial metabolic pathways are found to be dysregulated in the fecal microbiota of ulcerative colitis patients. These novel metabolic pathways underlying the bioactivities of 2'-FL may lay a foundation for applying individual oligosaccharides for prophylactic intervention for diseases associated with impaired intestinal homeostasis.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Ácido Pantotênico/análogos & derivados , Adulto , Humanos , Animais , Camundongos , Leite Humano , Colite Ulcerativa/metabolismo , Oligossacarídeos/metabolismo , Colite/prevenção & controle , Inflamação
5.
Carbohydr Polym ; 333: 121929, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494211

RESUMO

Polymerized guluronates (polyG)-specific alginate lyase with lower polymerized mannuronates (polyM)-degrading activity, superior stability, and clear action mode is a powerful biotechnology tool for the preparation of AOSs rich in M blocks. In this study, we expressed and characterized a polyG-specific alginate lyase OUC-FaAly7 from Formosa agariphila KMM3901. OUC-FaAly7 belonging to polysaccharide lyase (PL) family 7 had highest activity (2743.7 ± 20.3 U/µmol) at 45 °C and pH 6.0. Surprisingly, its specific activity against polyG reached 8560.2 ± 76.7 U/µmol, whereas its polyM-degrading activity was nearly 0 within 10 min reaction. Suggesting that OUC-FaAly7 was a strict polyG-specific alginate lyase. Importantly, OUC-FaAly7 showed a wide range of temperature adaptations and remarkable temperature and pH stability. Its relative activity between 20 °C and 45 °C reached >90 % of the maximum activity. The minimum identifiable substrate of OUC-FaAly7 was guluronate tetrasaccharide (G4). Action process and mode showed that it was a novel alginate lyase digesting guluronate hexaose (G6), guluronate heptaose (G7), and polymerized guluronates, with the preferential generation of unsaturated guluronate pentasaccharide (UG5), although which could be further degraded into unsaturated guluronate disaccharide (UG3) and trisaccharide (UG2). This study contributes to illustrating the catalytic properties, substrate recognition, and action mode of novel polyG-specific alginate lyases.


Assuntos
Dissacarídeos , Oligossacarídeos , Especificidade por Substrato , Oligossacarídeos/metabolismo , Dissacarídeos/metabolismo , Polissacarídeo-Liases/metabolismo , Alginatos/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Bactérias/química
6.
J Agric Food Chem ; 72(11): 5860-5866, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452259

RESUMO

Lacto-N-biose I (LNB), termed a Type 1 disaccharide, is an important building block of human milk oligosaccharides. It shows promising prebiotic activity by stimulating the proliferation of many gut-associated bifidobacteria and thus displays good potential in infant foods or supplements. Enzymatic and microbial approaches to LNB synthesis have been studied, almost all of which involve glycosylation of LNB phosphorylase as the final step. Herein, we report a new and easier microbial LNB synthesis strategy through the route "lactose → lacto-N-triose II (LNTri II) → lacto-N-tetraose (LNT) → LNB". A previously constructed LNT-producing Escherichia coli BL21(DE3) strain was engineered for LNB biosynthesis by introducing Bifidobacterium bifidum LnbB. LNB was efficiently produced, accompanied by lactose regeneration. Genomic integration of key pathway genes related to LNTri II and LNT synthesis was performed to enhance LNB titers. The final engineered strain produced 3.54 and 26.88 g/L LNB by shake-flask and fed-batch cultivation, respectively.


Assuntos
Acetilglucosamina/análogos & derivados , Escherichia coli , Leite Humano , Lactente , Humanos , Leite Humano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Lactose/metabolismo , Oligossacarídeos/metabolismo
7.
Int J Biol Macromol ; 264(Pt 1): 130501, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442831

RESUMO

Low-molecular-weight heparins (LMWHs), especially the specific-sized heparin oligosaccharides, are attractive for the therapeutic applications, while their synthesis remains challenging. In the present study, unsaturated even-numbered heparosan oligosaccharides were firstly prepared by cleaving high-molecular-weight heparosan using recombinant heparinase III (HepIII). The conversion rates of the unsaturated disaccharides, tetrasaccharides, hexasaccharides, octasaccharides, and decasaccharides were 33.9 %, 47.9 %, 78.7 %, 71.8 %, and 53.4 %, respectively. After processing the aforementioned heparosan oligosaccharides with the Δ4,5 unsaturated glycuronidase, saturated odd-numbered heparosan trisaccharides, pentasaccharides, heptasaccharides, and nonasaccharides were produced. It was observed that among them, the pentasaccharides were the smallest units of saturated odd-numbered oligosaccharides recognized by HepIII. These oligosaccharides were further catalyzed with bifunctional heparan sulfate N-deacetylase/N-sulfotransferase (NDST) under optimized reaction conditions. It was found that the tetrasaccharide was defined as the smallest recognition unit for NDST, obtaining the N-sulfonated heparosan tetrasaccharides, pentasaccharides, and hexasaccharides with a single sulfonate group, as well as N-sulfonated heparosan heptasaccharides, octasaccharides, and nonasaccharides with multiple sulfonate groups. These results provide an easy pathway for constructing a library of specific-sized N-sulfonated heparosan oligosaccharides that can be used as the substrates for the enzymatic synthesis of LMWHs and heparin oligosaccharides, shedding new light on the substrate preference of NDST.


Assuntos
Dissacarídeos , Oligossacarídeos , Dissacarídeos/metabolismo , Oligossacarídeos/metabolismo , Heparina , Heparina de Baixo Peso Molecular
8.
Sci Rep ; 14(1): 4236, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378944

RESUMO

Breast milk composition is influenced by maternal diet. This study aimed to evaluate if supplementation of maternal diet with a prebiotic fibre, through its potential effect on milk composition, can be a leverage to orientate the gut microbiota of infants in a way that would be beneficial for their health. Twelve sows received a diet supplemented with short chain fructo-oligosaccharides or maltodextrins during the last month of gestation and the lactation. Oligosaccharidic and lipidomic profiles of colostrum and mature milk (21 days), as well as faecal microbiota composition and metabolomic profile of 21 day-old piglets were evaluated. The total porcine milk oligosaccharide concentration tended to be lower in scFOS-supplemented sows, mainly due to the significant reduction of the neutral core oligosaccharides (in particular that of a tetrahexose). Maternal scFOS supplementation affected the concentration of 31 lipids (mainly long-chain triglycerides) in mature milk. Faecal short-chain fatty acid content and that of 16 bacterial metabolites were modified by scFOS supplementation. Interestingly, the integrative data analysis gave a novel insight into the relationships between (i) maternal milk lipids and PMOs and (ii) offspring faecal bacteria and metabolites. In conclusion, scFOS-enriched maternal diet affected the composition of mature milk, and this was associated with a change in the colonisation of the offspring intestinal microbiota.


Assuntos
Lactação , Leite , Animais , Suínos , Gravidez , Feminino , Humanos , Leite/metabolismo , Projetos Piloto , Suplementos Nutricionais/análise , Dieta/veterinária , Metaboloma , Oligossacarídeos/metabolismo , Lipídeos , Ração Animal/análise
9.
J Biol Chem ; 300(3): 105712, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309509

RESUMO

We recently established a method for the isolation of serum-free oligosaccharides, and characterized various features of their structures. However, the precise mechanism for how these glycans are formed still remains unclarified. To further investigate the mechanism responsible for these serum glycans, here, we utilized rat primary hepatocytes to examine whether they are able to secrete free glycans. Our findings indicated that a diverse array of free oligosaccharides such as sialyl/neutral free N-glycans (FNGs), as well as sialyl lactose/LacNAc-type glycans, were secreted into the culture medium by primary hepatocytes. The structural features of these free glycans in the medium were similar to those isolated from the sera of the same rat. Further evidence suggested that an oligosaccharyltransferase is involved in the release of the serum-free N-glycans. Our results indicate that the liver is indeed secreting various types of free glycans directly into the serum.


Assuntos
Hepatócitos , Oligossacarídeos , Animais , Ratos , Hepatócitos/metabolismo , Oligossacarídeos/sangue , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Células Hep G2 , Humanos , Masculino , Ratos Wistar
10.
Bioresour Technol ; 397: 130481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395233

RESUMO

Brown algae are rich in biostimulants that not only stimulate the overall development and growth of plants but also have great beneficial effects on the whole soil-plant system. However, alginate, the major component of brown algae, is comparatively difficult to degrade. The cost of preparing alginate oligosaccharides (AOSs) is still too high to produce seaweed fertilizer. In this work, the marine bacterium Vibrio sp. B1Z05 is found to be capable of efficient alginate depolymerization and harbors an extended pathway for alginate metabolism. The B1Z05 extracellular cell-free supernatant exhibited great potential for AOS production at low cost, which, together with cellulase, can efficiently hydrolyze seaweed. The brown algal hydrolysis rates were significantly greater than those of the commercial alginate lyase product CE201, and the obtained seaweed extracts were rich in phytohormones. This work provides a low-cost but efficient strategy for the sustainable production of desirable AOSs and seaweed fertilizer.


Assuntos
Celulase , Feófitas , Alga Marinha , Celulase/metabolismo , Hidrólise , Fertilizantes , Polissacarídeo-Liases/metabolismo , Alga Marinha/metabolismo , Alginatos/metabolismo , Oligossacarídeos/metabolismo
11.
J Agric Food Chem ; 72(10): 5379-5390, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38420706

RESUMO

3'-Sialyllactose (3'-SL) is among the foremost and simplest sialylated breast milk oligosaccharides. In this study, an engineered Escherichia coli for high-titer 3'-SL biosynthesis was developed by introducing a multilevel metabolic engineering strategy, including (1) the introduction of precursor CMP-Neu5Ac synthesis pathway and high-performance α2,3-sialyltransferase (α2,3-SiaT) genes into strain BZ to achieve de novo synthesis of 3'-SL; (2) optimizing the expression of glmS-glmM-glmU involved in the UDP-GlcNAc and CMP-Neu5Ac synthesis pathways, and constructing a glutamine cycle system, balancing the precursor pools; (3) analysis of critical intermediates and inactivation of competitive pathway genes to redirect carbon flux to 3'-SL biosynthesis; and (4) enhanced catalytic performance of rate-limiting enzyme α2,3-SiaT by RBS screening, protein tag cloning. The final strain BZAPKA14 yielded 9.04 g/L 3'-SL in a shake flask. In a 3 L bioreactor, fed-batch fermentation generated 44.2 g/L 3'-SL, with an overall yield and lactose conversion of 0.53 g/(L h) and 0.55 mol 3'-SL/mol, respectively.


Assuntos
Monofosfato de Citidina/análogos & derivados , Escherichia coli , Engenharia Metabólica , Ácidos Siálicos , Humanos , Escherichia coli/genética , Oligossacarídeos/metabolismo
12.
mBio ; 15(3): e0351923, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349137

RESUMO

K2-capsular Klebsiella pneumoniae is a hypervirulent pathogen that causes fatal infections. Here, we describe a phage tailspike protein, named K2-2, that specifically depolymerizes the K2 capsular polysaccharide (CPS) of K. pneumoniae into tetrasaccharide repeating units. Nearly half of the products contained O-acetylation, which was thought crucial to the immunogenicity of CPS. The product-bound structures of this trimeric enzyme revealed intersubunit carbohydrate-binding grooves, each accommodating three tetrasaccharide units of K2 CPS. The catalytic residues and the key interactions responsible for K2 CPS recognition were identified and verified by site-directed mutagenesis. Further biophysical and functional characterization, along with the structure of a tetrameric form of K2-2, demonstrated that the formation of intersubunit catalytic center does not require trimerization, which could be nearly completely disrupted by a single-residue mutation in the C-terminal domain. Our findings regarding the assembly and catalysis of K2-2 provide cues for the development of glycoconjugate vaccines against K. pneumoniae infection. IMPORTANCE: Generating fragments of capsular polysaccharides from pathogenic bacteria with crucial antigenic determinants for vaccine development continues to pose challenges. The significance of the C-terminal region of phage tailspike protein (TSP) in relation to its folding and trimer formation remains largely unexplored. The polysaccharide depolymerase described here demonstrates the ability to depolymerize the K2 CPS of K. pneumoniae into tetrasaccharide fragments while retaining the vital O-acetylation modification crucial for immunogenicity. By carefully characterizing the enzyme, elucidating its three-dimensional structures, conducting site-directed mutagenesis, and assessing the antimicrobial efficacy of the mutant enzymes against K2 K. pneumoniae, we offer valuable insights into the mechanism by which this enzyme recognizes and depolymerizes the K2 CPS. Our findings, particularly the discovery that trimer formation is not required for depolymerizing activity, challenge the current understanding of trimer-dependent TSP activity and highlight the catalytic mechanism of the TSP with an intersubunit catalytic center.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Humanos , Bacteriófagos/genética , Klebsiella pneumoniae/genética , Polissacarídeos/metabolismo , Oligossacarídeos/metabolismo , Infecções por Klebsiella/microbiologia , Cápsulas Bacterianas/genética
13.
Sci Rep ; 14(1): 4329, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383774

RESUMO

A probiotic-related benefit for the host is inherently linked to metabolic activity and integration in the gut ecosystem. To facilitate these, probiotics are often combined with specific prebiotics in a synbiotic formulation. Here, we propose an approach for improving probiotic metabolic activity and engraftment. By cultivating the probiotic strain in the presence of a specific prebiotic (preconditioning), the bacterial enzymatic machinery is geared towards prebiotic consumption. Today, it is not known if preconditioning constitutes an advantage for the synbiotic concept. Therefore, we assessed the effects galacto-oligosaccharide (GOS) addition and preconditioning on GOS of Limosilactobacillus reuteri DSM 17938 on ex vivo colonic metabolic profiles, microbial community dynamics, and osteoblastogenesis. We show that adding GOS and preconditioning L. reuteri DSM 17938 act on different scales, yet both increase ex vivo short-chain fatty acid (SCFA) production and engraftment within the microbial community. Furthermore, preconditioned supernatants or SCFA cocktails mirroring these profiles decrease the migration speed of MC3T3-E1 osteoblasts, increase several osteogenic differentiation markers, and stimulate bone mineralization. Thus, our results demonstrate that preconditioning of L. reuteri with GOS may represent an incremental advantage for synbiotics by optimizing metabolite production, microbial engraftment, microbiome profile, and increased osteoblastogenesis.


Assuntos
Limosilactobacillus reuteri , Microbiota , Probióticos , Osteogênese , Probióticos/farmacologia , Prebióticos , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Ácidos Graxos Voláteis
14.
J Bacteriol ; 206(2): e0033423, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38299857

RESUMO

Among the first microorganisms to colonize the human gut of breastfed infants are bacteria capable of fermenting human milk oligosaccharides (HMOs). One of the most abundant HMOs, 2'-fucosyllactose (2'-FL), may specifically drive bacterial colonization of the intestine. Recently, differential growth has been observed across multiple species of Akkermansia on various HMOs including 2'-FL. In culture, we found growth of two species, A. muciniphila MucT and A. biwaensis CSUN-19,on HMOs corresponded to a decrease in the levels of 2'-FL and an increase in lactose, indicating that the first step in 2'-FL catabolism is the cleavage of fucose. Using phylogenetic analysis and transcriptional profiling, we found that the number and expression of fucosidase genes from two glycoside hydrolase (GH) families, GH29 and GH95, vary between these two species. During the mid-log phase of growth, the expression of several GH29 genes was increased by 2'-FL in both species, whereas the GH95 genes were induced only in A. muciniphila. We further show that one putative fucosidase and a ß-galactosidase from A. biwaensis are involved in the breakdown of 2'-FL. Our findings indicate that the plasticity of GHs of human-associated Akkermansia sp. enables access to additional growth substrates present in HMOs, including 2'-FL. Our work highlights the potential for Akkermansia to influence the development of the gut microbiota early in life and expands the known metabolic capabilities of this important human symbiont.IMPORTANCEAkkermansia are mucin-degrading specialists widely distributed in the human population. Akkermansia biwaensis has recently been observed to have enhanced growth relative to other human-associated Akkermansia on multiple human milk oligosaccharides (HMOs). However, the mechanisms for enhanced growth are not understood. Here, we characterized the phylogenetic diversity and function of select genes involved in the growth of A. biwaensis on 2'-fucosyllactose (2'-FL), a dominant HMO. Specifically, we demonstrate that two genes in a genomic locus, a putative ß-galactosidase and α-fucosidase, are likely responsible for the enhanced growth on 2'-FL. The functional characterization of A. biwaensis growth on 2'-FL delineates the significance of a single genomic locus that may facilitate enhanced colonization and functional activity of select Akkermansia early in life.


Assuntos
Akkermansia , Trissacarídeos , alfa-L-Fucosidase , Lactente , Humanos , Akkermansia/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Filogenia , Oligossacarídeos/metabolismo , beta-Galactosidase/genética
15.
Microbiome ; 12(1): 41, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38419055

RESUMO

Chondroitin sulfate (CS) has widely been used as a symptomatic slow-acting drug or a dietary supplement for the treatment and prevention of osteoarthritis. However, CS could not be absorbed after oral intake due to its polyanionic nature and large molecular weight. Gut microbiota has recently been proposed to play a pivotal role in the metabolism of drugs and nutrients. Nonetheless, how CS is degraded by the human gut microbiota has not been fully characterized. In the present study, we demonstrated that each human gut microbiota was characterized with a unique capability for CS degradation. Degradation and fermentation of CS by the human gut microbiota produced significant amounts of unsaturated CS oligosaccharides (CSOSs) and short-chain fatty acids. To uncover which microbes were responsible for CS degradation, we isolated a total of 586 bacterial strains with a potential CS-degrading capability from 23 human fecal samples. Bacteroides salyersiae was a potent species for CS degradation in the human gut microbiota and produced the highest amount of CSOSs as compared to other well-recognized CS-degraders, including Bacteroides finegoldii, Bacteroides thetaiotaomicron, Bacteroides xylanisolvens, and Bacteroides ovatus. Genomic analysis suggested that B. salyersiae was armed with multiple carbohydrate-active enzymes that could potentially degrade CS into CSOSs. By using a spent medium assay, we further demonstrated that the unsaturated tetrasaccharide (udp4) produced by the primary degrader B. salyersiae could serve as a "public goods" molecule for the growth of Bacteroides stercoris, a secondary CS-degrader that was proficient at fermenting CSOSs but not CS. Taken together, our study provides insights into the metabolism of CS by the human gut microbiota, which has promising implications for the development of medical and nutritional therapies for osteoarthritis. Video Abstract.


Assuntos
Bacteroides , Microbioma Gastrointestinal , Osteoartrite , Humanos , Sulfatos de Condroitina/metabolismo , Oligossacarídeos/metabolismo
16.
Cell Host Microbe ; 32(2): 149-150, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38359795

RESUMO

Human milk oligosaccharide (HMO) consumption by the infant microbiota is positively associated with immune health. In this issue of Cell Host & Microbe, Buzun et al. report a mechanism for HMO digestion by Bacteroides fragilis and demonstrate how the same pathway works on intestinal mucus to establish long-term gut residency.


Assuntos
Microbiota , Leite Humano , Lactente , Humanos , Bacteroides fragilis , Oligossacarídeos/metabolismo , Muco/metabolismo
17.
Carbohydr Polym ; 330: 121816, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368098

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are excellent candidates for enzymatic functionalization of natural polysaccharides, such as cellulose or chitin, and are gaining relevance in the search for renewable biomaterials. Here, we assessed the cellulose fiber modification potential and catalytic performance of eleven cellulose-active fungal AA9-type LPMOs, including C1-, C4-, and C1/C4-oxidizing LPMOs with and without CBM1 carbohydrate-binding modules, on cellulosic substrates with different degrees of crystallinity and polymer chain arrangement, namely, Cellulose I, Cellulose II, and amorphous cellulose. The potential of LPMOs for cellulose fiber modification varied among the LPMOs and depended primarily on operational stability and substrate binding, and, to some extent, also on regioselectivity and domain structure. While all tested LPMOs were active on natural Cellulose I-type fibers, activity on the Cellulose II allomorph was almost exclusively detected for LPMOs containing a CBM1 and LPMOs with activity on soluble hemicelluloses and cello-oligosaccharides, for example NcAA9C from Neurospora crassa. The single-domain variant of NcAA9C oxidized the cellulose fibers to a higher extent than its CBM-containing natural variant and released less soluble products, indicating a more dispersed oxidation pattern without a CBM. Our findings reveal great functional variation among cellulose-active LPMOs, laying the groundwork for further LPMO-based cellulose engineering.


Assuntos
Celulose , Polissacarídeos , Celulose/metabolismo , Polissacarídeos/metabolismo , Oxirredução , Oxigenases de Função Mista/química , Oligossacarídeos/metabolismo , Estresse Oxidativo
18.
J Agric Food Chem ; 72(8): 4367-4375, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38374607

RESUMO

Difucosyllactose (DFL) is an important component of human milk oligosaccharides (HMOs) and has significant benefits for the growth and development of infants. So far, a few microbial cell factories have been constructed for the production of DFL, which still have problems of low production and high cost. Herein, a high-level de novo pathway DFL-producing strain was constructed by multistep optimization strategies in Escherichia coli BL21star(DE3). We first efficiently synthesized the intermediate 2'-fucosyllactose (2'-FL) in E. coli BL21star(DE3) by the advisable stepwise strategy. The truncated α-1,3/4-fucosyltransferase (Hp3/4FT) was then introduced into the engineered strain to achieve de novo biosynthesis of DFL. ATP-dependent protease (Lon) and GDP-mannose hydrolase (NudK) were deleted, and mannose-6-phosphate isomerase (ManA) was overexpressed to improve GDP-l-fucose accumulation. The regulator RcsA was overexpressed to fine-tune the expression level of pathway genes, thereby increasing the synthesis of DFL. The final strain produced 6.19 g/L of DFL in the shake flask and 33.45 g/L of DFL in the 5 L fermenter, which were the highest reported titers so far. This study provides a more economical, sustainable, and effective strategy to produce the fucosylated human milk oligosaccharides (HMOs).


Assuntos
Escherichia coli , Fucose , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Fucose/metabolismo , Trissacarídeos/metabolismo , Guanosina Difosfato Fucose , Oligossacarídeos/metabolismo , Leite Humano/metabolismo , Engenharia Metabólica
19.
Carbohydr Polym ; 331: 121869, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388037

RESUMO

Xylooligosaccharides (XOS) have been employed as prebiotics containing oligomers of varying sizes or molecular ratios. XOS with a low degree of polymerization (DP) has been demonstrated to have high prebiotic potential. However, there is limited information regarding the specific chain length of XOS required to elicit distinct responses in the gut microbiota. In this study, we aimed to explore whether variations in XOS DP could alter the fate of colonic fermentation. Five XOS fractions (BWXFs) with DP ranges of >40, 20-40, 10-20, 5-10, and 2-4 were prepared by beechwood xylan autohydrolysis and tested on human gut microbiota. Extracellular XOS degradation was observed for molecules with a DP exceeding 5. BWXF treatments altered the microbial community structures, and substrate size-dependent effects on the microbial composition and metabolic outputs were observed. Bacteroidaceae were specifically enriched by xylan. Lachnospiraceae were particularly stimulated by XOS with a DP of 20-40 and 2-4. Bifidobacteriaceae were notably enriched by XOS with a DP of 5-20. High butyrate yields were obtained from cultures containing long-chain BWXFs. Microbiota responses differed with XOS DP composition changes, and microbial competition with XOS with a DP of 2-4 requires further exploration.


Assuntos
Prebióticos , Xilanos , Humanos , Fermentação , Xilanos/metabolismo , Colo/metabolismo , Oligossacarídeos/metabolismo , Glucuronatos/metabolismo
20.
Int J Biol Macromol ; 260(Pt 1): 129277, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211918

RESUMO

GH 11 endo-ß-1,4-xylanase (Xy) was a crucial enzyme for xylooligosaccharides (XOS) production. The lower reusability and higher cost of purification has limited the industrial application of Xy. Addressing these challenges, our study utilized various immobilization techniques, different supports and forces for Xy immobilization. This study presents a new method in the development of Fe3O4@PDA@MOF-Xy which is immobilized via multi-point interaction forces, demonstrating a significant advancement in protein loading capacity (80.67 mg/g), and exhibiting remarkable tolerance to acidic and alkaline conditions. This method significantly improved Xy reusability and efficiency for industrial applications, maintaining 60 % activity over 10 cycles. Approximately 23 % XOS production was achieved by Fe3O4@PDA@MOF-Xy. Moreover, the yield of XOS from cobcorn xylan using this system was 1.15 times higher than that of the free enzyme system. These results provide a theoretical and applicative basis for enzyme immobilization and XOS industrial production.


Assuntos
Endo-1,4-beta-Xilanases , Oligossacarídeos , Endo-1,4-beta-Xilanases/metabolismo , Oligossacarídeos/metabolismo , Xilanos/metabolismo , Glucuronatos/metabolismo , Fenômenos Magnéticos , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...